Software Quality Management II Vol. 1: Managing Quality Systems Ed. M. Ross, C. A. Brebbia, G. Staples, J. Stapleton, Computational
Mechanics Publications, Southampton, Boston pp. 63-78 (1994). This paper is made available as an electronic preprint. One print or
electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic
or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper
are prohibited.

Software Quality Management II Vol. 1:

Setting Up a Pre-production Quality Management Process in
the Medical Device Industry

S.B. Leif,?, S. H. L. Aha® & Robert C. Leif?

Ada Med 5648 Toyon Rd, San Diego, CA 92115.
Tel.(619)582-0437, Email rleif@rleif.com

bS H. Leif, Email steph(@newportinstruments.com

ABSTRACT

Medical device development and manufacture is a large, regulated
industry. Medical devices now include a substantial software component
which must be developed according to “good manufacturing practices.”
Good manufacturing practices require the definition and enforcement of
software processes which ensure quality products by defining a detailed
method of software construction. Although the technical problems of cre-
ating a software process are significant, the political and human problems
associated with its implementation are of greater difficulty. Our experi-
ence with organizing the software process including the transfer software
technology from the defense industry to medical electronics will be dis-
cussed.

INTRODUCTION

This paper is based on our experience with instrument development
and manufacturing for the medical device industry. These observations
should be applicable to other large, regulated industries and any industry
which requires the minimization of software defects. Medical devices
including the associated software are regulated by the Food and Drug
Administration (FDA) in the United States and many nations require that
device manufactures adhere to ISO (International Standards Organization)
9000.

The FDA is responsible for assuring the safety and effectiveness of
medical devices under the 1976 Medical Device Amendments to the Fed-
eral Food, Drug, and Cosmetic Act. In November of 1990, the US Con-
gress passed the Safe Medical Device Act, which extended their authority
to the pre-production area. The FDA expects to see a defined process,

Page 1 of 16



proof that the defined process was followed, as well as an established
quality system. Pre-production is all activities that take place before man-
ufacturing. For software, production is disk duplication or other forms of
generating distributable electronic media. Thus, pre-production activity
encompasses everything in the software life-style except for maintenance.

The FDA requires pre-market notification before a medical device
can be marketed and sold. For new technology, the process is called Pre-
Market Approval; for enhancements and new instruments which are sub-
stantially equivalent to ones already being marketed, the submittal is in
the form of a 510(k). In 1987, the FDA released in draft form a “Reviewer
Guidance for Computer-Controlled Medical Devices”. This document [1]
defines the kind of information on software that FDA reviewers expect to
find in a 510(k) or Pre-Market Notification. Included in this document is
the requirement that the submission must contain a certification which is
a:

“Written affirmation stating that software development was
followed, that good quality assurance procedures were
adhered to, and that test results demonstrate that the system
specifications and functional requirements were met [1].”

Many medical devices include a substantial software component,
which according to regulatory agencies must be developed according to
“good manufacturing processes”.

The FDA started to monitor device recalls during the mid 1980's.
Their studies showed that 45% of all recalls were due to preproduction
related problems. These problems were directly traceable to one or more
of the following: poor design, a lack of or inadequate requirements, or
failure to follow a documented life cycle.

ISO has promulgated Quality Management and Quality Assurance
Standards (REFS). The European Community and many other countries
will employ the ISO standards. Some countries are already starting to
require ISO certification for all medical devices. Companies interested in
world wide sales must satisfy both ISO and FDA regulations.

There are minor differences between the requirements which are
specified by the FDA and ISO. The FDA is more interested in hazard
analysis and does not require any economics of conformance. Economics
of conformance is the total cost of making, finding, repairing or avoiding
defects. It is made up of prevention cost, appraisal cost, internal failure
cost, and external failure cost. In assuring compliance, the ISO certifica-

Glascow3.DOC Page 2 of 16, July 4, 2002 10:44 am



tion is done by a third party, while the FDA relies upon the word of the
company. If the FDA finds that the company falsified statements those
responsible can be imprisoned on felony charges and the company fined.

GOOD MANUFACTURING PRACTICE FOR SOFTWARE

The key elements that the FDA and ISO look for in the software
area are:

1) A documented and adhered to software development process.

2) Software requirements, hazard and safety concerns in the
requirements.

3) Hazard and safety traceability through design, code and testing.

4) Formalized testing with evidence through traceability that the
hazards and safety issues were addressed.

Good manufacturing processes [2] start with the design input. Both
agencies expect to see a documented software life-style with emphasis on
specifying requirements. The FDA expects companies producing software
for medical devices to have in-house standards for programming. These
standards should specify the requirements and restrictions which are to be
followed when writing computer programs. The standards should cover
documentation procedures, coding standards, and software testing stan-
dards. The software should be written in modules which can be tested. The
testing process must be comprehensive and well documented. The hazard
analysis must be thorough and should be reiterated for each development
stage. Wherever possible, the system should include fail safes. The code
should be inspected and reviewed to ensure that it reflects the design and
follows the company policies.

Once requirements for the software are determined, the software
according to the US Food and Drug Administration and ISO 9000 must be
produced following good manufacturing practices. Unfortunately these
organizations have not provided a simple description of software good
manufacturing practice.

A quality system must be compliant with the regulations, yet in
order to be effective, be easy to follow and documented. The means for
monitoring processes must be unobtrusive yet accurate. The essential ele-
ments of the quality system are: configuration management, verification
and validation, quality assurance, and project management.

Page 3 of 16



The first step in developing a documented software process is to
specify the overall process. This can be done with a Software Project
Development Plan.

Software Project Development Plan

This plan specifies the software development process for all medi-
cal device software projects. It states how software projects are to be man-
aged and controlled by a manufacturer and the software development life
cycle. The key elements to a plan are:

1) a list of the required documents,
2) the order in which they will be developed,

3) which group or type of individual is responsible for creating
each of the required documents,

4) the position of the individuals who review and approve each of
the documents.

A good technique is to write a plan to permit Boehm's spiral devel-
opment model [3]. Boehm's model is much closer to the reality of soft-
ware development for instruments, as has been previously described [4]
than the standard waterfall model.

The Software Project Development Plan should cover controlling
and describing a project. The key controlling documents are:

(1) the Software Project Management Plan [5],

(2) the Software Quality Assurance Plan [6],

(3) the Software Configuration Management Plan [7], and
(4) the Software Verification and Validation Plan [8].

These plans are generic and are tailored to each project. They do
not need to be large and overwhelming. Depending upon the project, they
can be quite concise.

Key Project Plans

Software Project Management Plan This document specifies the plan for
control and management of the elements of a software project. It defines
the technical and managerial processes necessary to satisfy the project
requirements. This plan needs to be written at the inception of each soft-
ware project; however, the basic outline should apply to all projects. When

Glascow3.DOC Page 4 of 16, July 4, 2002 10:44 am



the plan is completed, it must be given a management review to insure
compliance with the organization's established software development pro-
cess.

As the project proceeds, this plan must be reviewed and updated at
the conclusion of each phase of the software development life cycle. The
Software Project Management Plan details the organizational structure,
organizational boundaries and interfaces as well as project responsibili-
ties. This document provides the forum to present management objectives
and priorities, as well as stating what risks have been identified and what
assumptions have been made. It is also the place where the work pack-
ages, schedule and budget are presented.

Software Quality Assurance Plan This document specifies how the project
shall be monitored, and reviewed. In addition, this plan will ensure that
the software development process is in compliance with the Software
Project Development Plan. This plan establishes a mutual understanding
between software development and software quality assurance personnel,
with respect to how the software development process will be monitored.

Software Configuration Management Plan This document provides the
basis for keeping a project under control. It delineates the authority and
responsibility for entering new elements under control, updating and edit-
ing existing elements and insuring that unauthorized changes do not occur.
This plan applies to the development and maintenance of all the specifica-
tions, designs, test plans, source code, object code, test data, and docu-
mentation. This plan also applies to the maintenance of supporting
software products and tools used in the development of software.

Key elements that the Software Configuration Management Plan
should include are: a methodology for identifying the configuration ele-
ments, configuration control, interface control, as well as a way to do con-
figuration status accounting. This plan should also identify the
management, authority and responsibilities of the software configuration
manager. Software tools are available to assist in this process. At least,
one language, Ada, will not permit compilation of components in an
incorrect order. The capacity to reliably control multiple versions of the
software is required. Detection of obsolete components is available in
Ada.

Software Verification and Validation Plan This document must be started
early in the project. It evolves as the project matures. The first elements
which are covered in the early plan are the acceptance testing and system
testing. As the project develops, the integration test plans and module test

Page 5 of 16



plans are added. The purpose of a Software Verification and Validation
Plan is to describe the process of determining whether the software
requirements are complete and correct, the products of each software
development phase fulfill the requirements or conditions imposed by the
previous phase, and that the final system complies with specified require-
ments.

The Software Verification and Validation Plan will help ensure that
errors are detected and corrected as early as possible in the software life
cycle and that project risk, cost, and schedule effects are lessened. The
plan can enhance software quality and reliability as well as system safety.
Management visibility into the software process is improved. Proposed
changes and their consequences can be assessed quickly. The plan also
provides checks that the software Verification and Validation process is in
compliance with the software development process.

The product items covered by a software verification and valida-
tion plan should include all software that is considered part of the instru-
ment and all hardware related to fail-safe requirements. Each system
hazard identified in the specifications should have compensating fail-safe
requirements associated with it. The plan should cover the verification and
validation activities that will be performed.

The goals of a verification and validation effort are to identify
problems, as early as possible, in the product development life cycle,
report them to the project team for correction, and to perform verification
and validation tasks in parallel with the project development effort. This
will enable the project to ensure compliance with regulatory requirements.
The early development of a verification and validation plan will facilitate
the performance of software testing at the component, integration, system,
acceptance test level, and hazards testing. Documentation of the hazards
testing activities, including traceability between the applicable documents,
will be easier, as will the performance of regression testing, as required to
verify corrective action to code. The ultimate goal is to release project
software which is safe and meets the specified requirements.

Specific Project Documents
Describing a specific project requires the following specific docu-
ments:

(1) Concept or Product Specification,
(2) System Specification,

Glascow3.DOC Page 6 of 16, July 4, 2002 10:44 am



(3) Software Requirements Specification,
(4) Software Design,

(5) Hazard Analysis,

(6) the code itself.

Concept_Specification or Product Specification This document is the
launch of a new product. In many organizations, it is written by the mar-
keting department and refined with the consensus of the engineering staff.
This document describes what is wanted in terms of marketplace, capabil-
ities, cost, and performance. Approval needs to be given by: the corporate
financial body for permission to develop and build; the engineering
department in terms of feasibility, cost and delivery; manufacturing, ser-
vice, and sales also need to have input.

System Specification The System Specification is generated from the
Concept Specification. This documents details in rough strokes the major
components of the system in terms of electrical, mechanical and software.
It adds detail to further describe the “what” of the system.

Software Requirement Specification This document describes the
detailed requirements for the software. The Software Requirement Speci-
fication is best done as a joint effort between marketing, engineering, ser-
vice, and manufacturing. It contains the user interface for the instrument.
Communication between the groups can be a major problem. Most non-
software personnel do not have an understanding of software engineering
or the capability to write software specifications. Most CASE tools are
incomprehensible to marketing professionals. One simple solution that has
been successfully employed is to simulate the system by story boarding
the screens [9] [10]. This is facilitated by employing commercially avail-
able screen generators [11] [12] [13]. Often, the code produced by the gen-
erators can be used in the final product. Unfortunately, none of the major
CASE tools has a direct link to screen a generator. A data dictionary of
types and their ranges must be agreed upon.

The Software Requirement Specification must specify program
behavior in three bounded intervals: prior to program start-up, normal pro-
gram execution, after shutdown.

Before program start-up, if the hardware cannot retain or indicate
receipt of an input prior to start-up, specify that inputs will be ignored. If
the hardware can observe existence of an input, the specifications must
specify what will be done about it. The requirements also need to specify

Page 7 of 16



what will happen to inputs that arrive after shutdown.

Another area where the requirements must be specific is in the
Input Capacity vs. Output Capacity. The input environment may be able to
generate more inputs than output environment can absorb. The software
needs to handle 3 cases:

1. Input and output rates within limits, the “normal response”.

2. Input rate within limits but output rate would be exceeded if nor-
mally timed output produced, then delayed response required.

3. Input rate excessive, then abnormal response required.

Where input and output capacities differ, there must be multiple
periods for which discrete capacity assumptions are specified. For these
overload conditions the requirements need to specify how they should be
handled. For example, by generating warning messages, generating output
to reduce load (i.e. messages to external systems to “slow down”), locking
out interrupts for overloaded channels, produce outputs that have reduced
accuracy and/or response time requirements. (Graceful degradation), or by
reducing the functionality provided by system.

Hazard Analysis Hazardous conditions can be the results of hardware fail-
ure, software failure, the operator, or system design. In doing a hazard
analysis, all types of failures should be analyzed. Where possible, the
hardware and software should be designed in a fail-safe fashion. A hazard
analysis should include the probability of the condition occurring and the
severity of the occurrence. This analysis should be started with the incep-
tion of the project. If potential hazardous conditions are recognized early
many times they can be designed ’out’ of the system. The hazard analysis
needs to be continuously updated through out the process. The final test-
ing of the product should include all fail-safes. Sometimes, the only means
of prevention is through labeling.

Software Design The software design needs to show traceability to the
Software Requirement Specification. Having complete requirements up
front facilitates the design of the code. The software design must respond
to all of the hazardous conditions which have been identified in the hazard
analysis and have been determined to be software preventable.

Both the Software Requirement Specification and Hazard Analysis
are key deliverables, which must be included for the FDA and ISO. These
bodies are looking for these documents to be created at the beginning of a
project and updated throughout the process. Retrofitting at the end of the
project is not acceptable. The FDA specifically wants to see traceability

Page 8 of 16



relating requirements, hazards, design, and testing.

This requirement for traceability provides a major problem with
today’s CASE tools. CASE tools are best suited for water-fall based devel-
opment. Real-world designs [4] tend to evolve according to Boehm’s spi-
ral model [3]. Although some CASE tools have limited capabilities to
reverse engineer the drawings from code, none can after correction of the
new drawings regenerate either the complete original code or that part
which is still consistent with the CASE drawings. The utility of CASE
tools will be greatly increased when they and the source code are really
two coupled views of the same object and are directly linked. It should
also be noted that individuals educated in languages based on alphabets
can have difficulty with representations based on pictographs or hiero-

glyphics.

Code The code produced should be written to a standard. The code must
be inspected and have been reviewed to ensure that it reflects the design
and has followed the company policies.

EXPERIANCES

The introduction of a quality plan which requires the creation and
maintenance of the documents described above is a very serious undertak-
ing. We will describe efforts to develop and implement such a plan. Ini-
tially, the development process which is followed is often established by
tradition and undocumented. An evaluation using the Carnegie Mellon
Maturity Model for Software [ref] often results in a score of level one.
Approach

What the engineers were actually doing is often fairly close to what
is required. The problem is to document their present procedures and
enforce consistency between projects. Each element of the process must
be written as a task with a thumbnail description of the requisite inputs
and outputs and the responsible parties designated. All of these tasks are
then linked graphically to show parallel activities, precursors, and succes-
sors and documented in a Process Guideline.

The major problems in implementing the process are often political
rather than technical. Upper management is often afraid to commit the
organization in writing to explicit procedures, because that would mean
they would be required to follow them. Engineers see documentation as
requiring more paperwork. Their usual refrain will be “what do you want,

Page 9 of 16



a product, or paperwork?”

A Standard Operating Procedure often states that development will
sequentially follow a process of Feasibility, Design, Prototype, Pilot, and
Manufacturing (an explicitly waterfall process). A key requirement is that
each project must write a project plan which documents the applicable
tasks from the Process Guideline. Projects are required to write a project
plan which would cover all of the elements of a quality system such as
project management, verification and validation, quality assurance, and
configuration management.

The problem is to provide consistency with some degree of flexi-
bility. Project managers must not be given freedom to pick and choose
what tasks that they feel like doing. A good check and balance of the sys-
tem is that the plans must be approved by the Director of Product Devel-
opment.

Our solution is to follow the IEEE guidelines [14] in developing
the documentation described above and to employ the Ada programing
language.

Training and Implementation Although it is important to make the
engineers cognizant of the formal process, one should avoid painful pro-
cesses that instill hostility. In one case, management required the staff to
fill out time-cards using tasks from the Process Guideline. This forced the
engineers to read the Process Guidelines and relate their activities to the
formal process. A more unobtrusive way to accomplish the same end is to
encourage the engineering staff to take software engineering courses. The
more interested individuals will become actively involved in developing
the process and serve as evangelists for the rest of the organization.

Software engineering courses including the study of the Ada pro-
gramming language often are quite upsetting to some members of the
staff. Sometimes, the exposure to this material induces the most vocifer-
ous opponents of a codified process to seek employment elsewhere.

The process must become an accepted part of corporate culture. It
is important to have frequent feedback to measure compliance to the pro-
cess. If the process is not being followed then management must deter-
mine if it is due to a lack of understanding/education, the process is too
complex, or the engineers lack of understanding that this is what upper
management really wants. It is very easy to write procedures which are
overly complex and impossible to follow. The feedback should act as a

Page 10 of 16



monitor against this. Do not be upset if procedures need to be refined
often in the beginning. In order to obtain the full benefits of process in a
corporation the process must be embraced enthusiastically by both man-
agement and the users.

Change will always receive a mixed reception. Some will denounce
it as a strait jacket that hinders their creativity. Others will praised it. Most
people want to know what is expected of them. A process guideline can be
of great help in ensuring that the proper prerequisites are completed. Many
times in the past, we have observed that tasks such as prototype manufac-
turing were started prematurely. The Process Guideline works as a check-
list to ensure that long lead tasks are started in a timely fashion.

Upper Management

The technical work of developing the process can be overwhelmed
by the social consequences of trying to implement the process without the
complete support of management. A critical element towards guarantying
success is the buy-in of upper management. In several cases, when upper
management was not totally committed, attempts towards codifying the
process, were undermined by the nay-sayers. What we did not do is bill
the new process like we would a new project and have the engineers sign
on. However, this would have been impossible until engineering manage-
ment signed on to the new process

TRANSFER OF DEPARTMENT OF DEFENSE TECHNOLGY TO
MEDICAL DEVICES

Ada Programing Language

Advantages of Ada Ada is a language which has been designed based on
software engineering concepts and has been successfully employed in sys-
tems of even greater criticality than medical devices [15]. Ada is a porta-
ble, general purpose language. The United States Defense Department
requires that any Ada compiler used internally or on a government con-
tract be validated. For this purpose, it has supported and maintained a val-
idation suite which assures with some degree of confidence that compilers
operate and that the Ada standard will hold across different hardware con-
figurations. Of course, code that interacts directly with hardware will have
to be changed to reflect the new hardware. Ada code is constructed out of
packages, which only interact through their specifications. A special
“with” statement must be included in a package to make specifications of
other packages visible. The package bodies, which are the parts that actu-
ally perform the operations, are invisible to the other packages. Hardware

Page 11 of 16



dependent changes are made whenever possible in the bodies. This delib-
erate limitation on visibility controls the interactions between packages.
These interactions are the side effects that plague software development
and testing. The package structure provides the modularity required for a
group to develop code.

Ada is readable and self-documenting. Safety features include:
strongly typing, range checking, and exceptions. Real-time constructs
based on tasking are included in the language. Ada compilers are like
most equipment employed for the manufacture of medical devices come
with a significant warranty.

Established Methodology and Software Engineering Culture The require-
ments of the Defense Department have resulted in the establishment of
independent verification and validation organizations. The military,
NASA and FAA have developed the technology to maximize both safety
and productivity. Well engineered code is often available from software
repositories. Since the Department of Defense has mandated the use of
Ada for all new software including management information services, a
large selection of software tools is available to assist in producing soft-
ware documentation. Since Ada is a product of the software engineering
establishment, its practitioners often see the attempt to achieve zero
defects as a moral booster and a professional obligation.

Project Management The Ada package structure permits partitioning of
the software into manageable components. These packages are easily
traceable to the software requirements and are the basic structuring mech-
anism for the software system. The software project schedule throughout
the development life-cycle can be monitored in terms of the Ada pack-
ages. The separate definition of interfaces (specifications) and their imple-
mentations (bodies) in Ada allows an orderly integration of the software
components and reduces the integration time.

Hazard Analysis Ada includes an exception construct, which is employed
to handle abnormal situations and permit recovery of the system. Many of
the hazards can have a one to one correlation with an exception.

Testing The white box testing that occurs during verification and valida-
tion includes checking the behavior of the system by entering a range of
values for each of the variables entered by the user or that could be cor-
rupted by the system. Since Ada compilers permit data types to have spe-
cific ranges and the initialization of variables when they are declared,
coverage for a variable can be achieved with fewer cases than for a weakly
typed language, such as C. Ada compilers produce error messages when a
potential over-range condition occurs for a data type.

Page 12 of 16



The presently published data indicates that Ada is still safer [16]
and more cost effective than any third generation language now known
[17]. The use of Ada for a medical device has been demonstrated [18]. For
a medical device, the benefits of Ada 83 outweigh the disadvantages. The
syntax and capabilities of Ada 83 are well suited for the efficient develop-
ment of the quality expected for a medical device.

Ada 1994 Object oriented and necessary low level features have been
added. Ada 94 permits object oriented programming with effiency and
safety[21]. Because of its many built in software engineering features
described above, Ada is a language of choice for a medical device [19]
[18].

CONCLUSION

The software process is an important way to ensure software qual-
ity. But the quality of the software processes themselves will determine
their effectiveness. For a company which is regulated, one of the worse
things to do is to write elaborate procedures and then not follow them. In
developing processes, it is best to make the first iterations very general,
gather experience in following the general procedures, and then gradually
refine them. The development of a software process is similar to the devel-
opment of any large software project [22]. A model, such as Boehm’s spi-
ral model [3], which supports successive refinements is preferred to the
inflexible waterfall model.

Paradoxically, the requirements of the regulatory authorities,
besides improving the product, can decrease the overall cost. A complete
specification and well documented design will speed product introduction
by permitting the use of concurrent engineering techniques and minimize
the time for review by the regulatory agencies. A well defined software
process will result in fewer errors and facilitate maintenance including
enhancements. The construction of a library of tested, reusable software
components (objects) will reduce both costs and time to market. Modern
modular languages, such as Ada, are designed to achieve this goal.

The choice of programming languages is important from a quality
point of view because programming languages are like any other manu-
facturing tool or material. The use of tools of known quality also fosters
pride in a developers’ workmanship. The presently published data indi-
cates that Ada is still safer [16] and more cost effective than any third gen-
eration language now known [17] and Ada’94 offers an excellent solution

Page 13 of 16



to the problems associated with object oriented programming. We do not
understand why medical device manufacturers continue to develop soft-
ware using old technology such as C and FORTRAN.

Standardized processes which everyone follows benefits manage-
ment because they have a consistent measuring stick on which to gage
progress. This standard process does not imply that individual groups can
no longer innovate. Instead it should foster the transfer of innovations
from one group to corporate wide. While the processes discussed in this
paper have primarily been document driven, we see a movement towards
object driven processes in the future. We hope to transfer some of the good
ideas behind the object-oriented bandwagon to process.

REFERENCES

1. “Reviewer Guidance For Computer Controlled Medical Devices Under-
going 510(k) Review,” Office of Device Evaluation Center for Devices
and Radiological Health Food and Drug Administration, Department of
Health and Human Services, Public Health Service, Stamped Aug 29,
1991.

2. Leif, S. B., and Leif, R. C. “Producing Quality Software According to
Medical Regulations for Devices”, Computer Based Medical Systems,
Proceedings of the Fifth Annual IEEE Symposium 265-272, 1992

3. Boehm, B. W. “A Spiral Model of Software Development and Enhance-
ment,” Computer, May, p.61, 1988.

4. Leif, R. C., Leif, S. B., and Leif, S. H. “The Real World of Instrument
Development”. IEEE Symposium Record, Policy Issues In Information

and Communication Technologies in Medical Applications, IEEE Catalog
No. UHO181-8 (1988).

5 ANSI/IEEE Std. 1058.1-1987 IEEE Standard for Software Project Man-
agement Plans.”. Institute of Electrical and Electronics Engineers, Inc.,
New York, New York.

6. ANSI/IEEE Std 730-1989 IEEE Standard for Software Quality Assur-
ance Plans. Institute of Electrical and Electronics Engineers, Inc., New
York, New York.

7. ANSI/IEEE Std 828-1990 IEEE Standard for Software Configuration
Management Plans. Institute of Electrical and Electronics Engineers, Inc.,
New York, New York.

8. ANSI/IEEE Std 1012-1986 IEEE Standard for Software Verification
and Validation Plans. Institute of Electrical and Electronics Engineers,
Inc., New York, New York.

Glascow3.DOC Page 14 of 16, July 4, 2002 10:44 am



9. Leif, S. B., Leif, R. C., and Auer, R. “The EPICS® C, an ergometeri-
cally Designed Flow Cytometer Computer System.” Analytical and Quan-
titative Cytology and Histology, vol. 7 p. 187, 1985.

10. Andriole, S. J. “Rapid Application Protyping, The Storyboard
Approach to User Requirements Analysis, Second Edition”, QED Techni-
cal Publishing Group, Wellesley, MA, 1992

11. AdaSAGE

12. Downs, M., Duff, J., Mackey, K., Teyssier, L., Tonas, C. “Using X
with the Ada Mind-set”, Conference Proceedings Tri-Ada *93 20-28 1993.

13. TeleUse

14e. “IEEE Software Engineering Standards Collection, Spring 1991 Edi-
tion,” Institute of Electrical and Electronics Engineers, Inc., New York,
New York.

15. Pyle, L. C. Developing Safety Systems, A Guide Using Ada, Prentice Hall
ISBN 0-13-204298-3.

16. Tang, L. S. “A Comparison of Ada and C++”, Conference Proceed-
ings TRI-Ada ‘92, 338-349, 1992.

17. Mosemann, L. K. “New 1s Good--Is Ada Too Old”, CrossTalk, The
Journal of Defense Software Engineering, 40 8, 1993.

18. Leif, R. C., Sara, J., Burgess, 1., Kelly, M., Leif, S. B., and Daly, T.
“The Development of Software in the Ada Language for a Mid-Range
Hematology Analyzer”. Tri-Ada ‘93 340-346 (1993).

19. Leif, R. C., Rosello, 1., Simler, D., Garcia, G. P., and Leif, S. B. “Ada
Software for Cytometry,” Analytical and Quantitative Cytology and His-
tology, vol. 13 p. 440, 1991.

20. Taft et al.T. “Ada 9X Mapping Specification 4.6 & Rationale 4.1”,
Intermetrics Inc. Cambridge MA, 1992.

21. Banner, B., and Schonberg, E., “Assessing Ada 9X OOP: Building a
Reusable Components Library”, Conference Proceedings TRI-Ada ‘92,
79-90, 1992.

22[Osterweil] Leon Osterweil, L., “Software processes are software too”
Oth International Conference on Software Engineering, 1987.

23. Office of Device Evaluation Center for Devices and Radiological
Health Food and Drug Administration, Department of Health and Human
Services, Public Health Service. “Reviewers Guidance for Computer Con-
trolled Medical Devices Undergoing 510(k) Review”, Stamped Aug 29,
1991.

Page 15 of 16



24.[2] “ANSI/ASQC Q90-1987 American National Standard, Quality
Management and Quality Assurance Standards--Guidelines for Selection

and Use”, American Society for Quality Control, Milwaukee, Wisconsin,
1987.

25[3] DOD-STD-2167A, DEPARTMENT OF DEFENSE, WASHING-
TON, D.C. 20301, Defense System Software Development

26. “Reference Manual for the Ada Programming Language,” Ada Joint
Program Office, The Pentagon, Washington, D.C. 20301

Glascow3.DOC Page 16 of 16, July 4, 2002 10:44 am



	Setting Up a Pre-production Quality Management Process in the Medical Device Industry
	ABSTRACT
	INTRODUCTION
	GOOD MANUFACTURING PRACTICE FOR SOFTWARE
	Software Project Development Plan
	Key Project Plans
	Software Project Management Plan This document specifies the plan for control and management of the elements of a software project. It defines the technical and managerial processes necessary to satisfy the project requirements. This plan nee...
	Specific Project Documents

	EXPERIANCES
	Upper Management
	Ada Programing Language

	CONCLUSION

